Autonomous AI System for Astronomical Anomaly Detection
Build an autonomous AI system that monitors astronomical time-lapse data, detects anomalies using deep learning, prioritizes discoveries, and provides real-time visualization dashboards.
Track your development progress through each phase
Phase 1: 2-3 days
Phase 2: 5-7 days
Phase 3: 4-6 days
Phase 4: 3-5 days
Phase 5: 2-4 days
mkdir aethers_eye && cd aethers_eye
python -m venv aether_envsource aether_env/bin/activate (Linux/Mac)aether_env\Scripts\activate (Windows)
pip install tensorflow pytorch opencv-python pandas numpy matplotlib
.mp4, .avi, .mov
cv2.VideoCapture()cap.read()frame_XXXX.jpg
data/frames/ - Individual frame imagesdata/video/ - Original video files
cv2.absdiff() - Calculate differencescv2.threshold() - Filter noisecv2.findContours() - Detect objects
data/training/anomaly/ - Real eventsdata/training/noise/ - False positives
features.csv
HIGH PRIORITY ALERT: Tasking telescope...